Declaration Sheet

Award Title: BSc (Hons) Computer Science

(Communicated in partial fulfillment of the assessment requirements for the above award.)

This work or any part thereof has not previously been presented in any form to the University or to any other institutional body whether for assessment or for other purposes. Save for any express acknowledgements, references and/or bibliographies cited in the work. I confirm that the intellectual content of the work is the result of my own efforts and of no other person.

It is acknowledged that the author of any project work shall own the copyright. However, by submitting such copyright work for assessment, the author grants to the University a perpetual royalty-free license to do all or any of those things referred to in section 16(I) of the Copyright Designs and Patents Act 1988. (viz. to copy work; to issue copies to the public; to perform or show or play the work in public; to broadcast the work or to make an adaptation of the work).

Student Name: Bishal Khadka

Student ID Number: 1928930

Signature: ______________________ Date: 09/09/2020
ABSTRACT

In this report/project I try to make recommendation system which is integrated to ecommerce site made up of Django. Recommendation system is one of the major sources for generating revenue in different online companies. Recommendation not only increases the sales of product but it helps to make the system personalized and helps to find out the preferences and interest of particular user to the product. It is currently being used in big tech companies for recommending products, songs, videos, movies, jobs, services etc. It is also implemented in search engine, ranking, friend suggestion, gaming, Point of interest, online advertisements etc. It is one of the most studied and researched topics in the field of artificial intelligence. Researcher and scientist now studying and developing recommendation using deep neural network.
ACKNOWLEDGEMENT

I would first like to sincerely convey my gratitude to my final year project supervisor Mr. Prakash Gautam of Herald college Kathmandu for replying my every e-mail, giving wise advice and reviews, clarify whenever I needed, scheduling meeting and showing me the right path for my steps throughout the development of this project and report writing. I will never forget what he has done to me and I am gratefully indebted to his involvement and contribution. This project will not be completed without his kind cooperation.

I would also like to thank Mr. Biraj Dulal as a reader for this report for his valuable comments. I would also like to acknowledge Mr. Padam Ghimire for introducing me to the topic of recommendation system.

I would like to thank all the contributors who have been enthusiastically participated and decided to share information and knowledge during my survey.

Lastly, I must be grateful to my parents and friends for providing me with trustworthy support and nonstop inspiration and praise. This accomplishment would not have been possible without them.

Thank you.

Author

Bishal Khadka
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Recommendation system</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Collaborative filtering</td>
<td></td>
</tr>
<tr>
<td>CBF</td>
<td>Content Based filtering</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td>Mean absolute error</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>Matrix factorization</td>
<td></td>
</tr>
<tr>
<td>MBMF</td>
<td>Magnitude bounded Matrix factorization</td>
<td></td>
</tr>
<tr>
<td>NMF</td>
<td>Non-negative Matrix Factorization algorithms</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>Adversarial Networks</td>
<td></td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
<td></td>
</tr>
<tr>
<td>B-SVD</td>
<td>Bounded Singular Value Decomposition</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Attentional Models</td>
<td></td>
</tr>
<tr>
<td>RBM</td>
<td>Restricted Boltzmann Machine</td>
<td></td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional neural network</td>
<td></td>
</tr>
<tr>
<td>RNN</td>
<td>Recurrent neural network</td>
<td></td>
</tr>
<tr>
<td>DNN</td>
<td>Deep neural network</td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td>Multilayer Perceptron</td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>Autoencoder</td>
<td></td>
</tr>
<tr>
<td>NADE</td>
<td>Neural Autoregressive Distribution Estimation</td>
<td></td>
</tr>
<tr>
<td>BMC-ADMM</td>
<td>Bounded Matrix Completion in Alternating Direction of Multiplier Method</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1. Introduction: .. 1
 1.1 Motivation: ... 2
 1.2 Academic question: ... 3
 1.3 Aims: ... 3
 1.4 Objective: ... 3
 1.5 Artifact: ... 4
 1.5.1 Artifact 1-Web Application: .. 4
 1.5.2 Artifact 2-Product Recommendation: ... 4
 1.6 Scope and limitation of project: .. 4
 1.7 Report Outline: ... 5

Chapter 2 Literature Review: ... 6
 2.1 Types of recommendation system: ... 7
 2.1.1 Content-based (CB) filtering: ... 8
 2.1.1.1 Term Frequency – Inverse document frequency: .. 8
 2.1.1.2 Cosine similarity matrix: .. 8
 2.2 Collaborative filtering (CF): ... 9
 2.2.1. Neighborhood-based approach: .. 9
 2.2.1.1. Pearson Correlation: .. 9
 2.2.1.2. Constrained Pearson correlation: .. 10
 2.2.1.3. Cosine distance: .. 10
 2.2.1.4. Mean squared distance: ... 11
 2.2.1.5. Euclidean Distance: .. 11
 2.2.1.6. Tanimoto Coefficient: ... 12
 2.2.1.7. Spearman Correlation: ... 12
 2.2.2 The clustering based Collaborative filtering: ... 12
 2.2.3 latent factor models: .. 13

Chapter 3: Requirement gathering and analysis: ... 18
 3.1 Sources of data: .. 18
 3.2 fact finding techniques: ... 18
 3.2.1 Research: ... 18
 3.2.2 Observation: .. 19
3.3 functional Decomposition diagram: ... 19
3.4 Functional requirement: .. 20
 3.4.1. UI/UX requirement: .. 20
 3.4.2. personalized recommendation system: .. 20
 3.4.3 Management requirements: ... 20
3.5 Non-functional requirement: ... 20
 3.5.1. Speed: .. 20
 3.5.2. Security and privacy: .. 21
 3.5.3. Extensibility: .. 21
3.6 Usability requirement: .. 21
 3.6.1 Ease of use: ... 21
 3.6.2 Satisfaction and memorability: ... 21
 3.6.3 Graphics: .. 21
Chapter 4: design and architecture: ... 22
 4.1. Process Design: ... 22
 4.1.1 Use case diagram: ... 22
 4.1.2 Class diagram: .. 23
 4.1.3 Sequence diagram: ... 24
 4.1.4 State Transition diagram: ... 25
 4.1.5 Activity diagram: .. 26
 4.1.5.1 Activity diagram for user: ... 26
 4.1.5.2 Activity diagram for admin: ... 27
 4.2. Database design: .. 28
 4.2.1 Entity relation diagram: .. 28
 4.2.1 Data dictionary diagram: .. 29
 4.3. User interface: ... 32
 4.3.1 Wireframe: .. 32
 4.4. System architecture: .. 37
 4.4.1 The MVC pattern: .. 37
Chapter 5 implementation and development process: ... 39
 5.1.1 Technical specification: .. 39
 5.1.2 Development: ... 39
Chapter 6: walkthrough of system: .. 44
6.1.1 Admin panel: ... 44

6.1.2 User view: ... 50

Chapter 7 Testing and Evaluation: .. 58
 7.1.1 Invalid Credential: ... 58
 7.1.2 Mobile Friendly Testing: ... 64
 7.1.4 Testing for Recommendation System: 69
 7.2 Academic Question: ... 72

Chapter 8 Conclusion and Future Work: ... 73
 8.1 Critical Evaluation: ... 73

References .. 75
Table of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>ecommerce revenue growth worldwide</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>ecommerce revenue growth in Nepal</td>
<td>1</td>
</tr>
<tr>
<td>Figure 3</td>
<td>top 5 countries with highest sell in e-commerce</td>
<td>2</td>
</tr>
<tr>
<td>Figure 4</td>
<td>types of recommender system</td>
<td>7</td>
</tr>
<tr>
<td>Figure 5</td>
<td>functional decomposition diagram</td>
<td>19</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Use case diagram</td>
<td>22</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Class diagram</td>
<td>23</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Sequence diagram</td>
<td>24</td>
</tr>
<tr>
<td>Figure 9</td>
<td>State transition diagram</td>
<td>25</td>
</tr>
<tr>
<td>Figure 10</td>
<td>activity diagram for user</td>
<td>26</td>
</tr>
<tr>
<td>Figure 11</td>
<td>activity diagram for admin</td>
<td>27</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Entity relation diagram</td>
<td>28</td>
</tr>
<tr>
<td>Figure 13</td>
<td>wireframe of index page</td>
<td>32</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Product detail page</td>
<td>33</td>
</tr>
<tr>
<td>Figure 15</td>
<td>profile page</td>
<td>34</td>
</tr>
<tr>
<td>Figure 16</td>
<td>My cart page</td>
<td>35</td>
</tr>
<tr>
<td>Figure 17</td>
<td>order details</td>
<td>36</td>
</tr>
<tr>
<td>Figure 18</td>
<td>MTV architecture Django</td>
<td>37</td>
</tr>
<tr>
<td>Figure 19</td>
<td>system architecture for recommendation system</td>
<td>38</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Euclidean score and Pearson score</td>
<td>42</td>
</tr>
<tr>
<td>Figure 21</td>
<td>admin login</td>
<td>44</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Admin Dashboard</td>
<td>45</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Add category</td>
<td>45</td>
</tr>
<tr>
<td>Figure 24</td>
<td>add sliders</td>
<td>45</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Add sub category</td>
<td>Error! Bookmark not defined.</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Add products</td>
<td>46</td>
</tr>
<tr>
<td>Figure 27</td>
<td>view users</td>
<td>47</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Viewing similar cluster</td>
<td>47</td>
</tr>
<tr>
<td>Figure 29</td>
<td>viewing profile information of user</td>
<td>48</td>
</tr>
<tr>
<td>Figure 30</td>
<td>viewing order detail</td>
<td>48</td>
</tr>
<tr>
<td>Figure 31</td>
<td>view orders</td>
<td>49</td>
</tr>
<tr>
<td>Figure 32</td>
<td>view shopcart of user</td>
<td>49</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Update order product information</td>
<td>49</td>
</tr>
<tr>
<td>Figure 34</td>
<td>user sign up</td>
<td>50</td>
</tr>
<tr>
<td>Figure 35</td>
<td>user sign in</td>
<td>50</td>
</tr>
<tr>
<td>Figure 36</td>
<td>Home page</td>
<td>51</td>
</tr>
<tr>
<td>Figure 37</td>
<td>Detail homepage</td>
<td>51</td>
</tr>
<tr>
<td>Figure 38</td>
<td>Search list</td>
<td>52</td>
</tr>
<tr>
<td>Figure 39</td>
<td>View category wise product</td>
<td>52</td>
</tr>
<tr>
<td>Figure 40</td>
<td>Product detail page 1</td>
<td>53</td>
</tr>
<tr>
<td>Figure 41</td>
<td>product detail page 2</td>
<td>53</td>
</tr>
<tr>
<td>Figure 42</td>
<td>User profile</td>
<td>54</td>
</tr>
</tbody>
</table>
Figure 43 Edit profile .. 54
Figure 44 change password ... 55
Figure 45 My cart.. 56
Figure 46 My orders ... 56
Figure 47 fill order details ... 57
Figure 48 order details .. 57
Figure 49 password does not match ... 58
Figure 50 user already exist .. 59
Figure 51 invalid username or password .. 60
Figure 52 invalid password 1 ... 60
Figure 53 Invalid password 2... 61
Figure 54 invalid password 3 ... 62
Figure 55 Invalid password 4... 63
Figure 56 Quantity limit for add to cart .. 63
Figure 57 mobile friendly testing index page .. 64
Figure 58 product detail page .. 65
Figure 59 mobile testing for login page ... 66
Figure 60 profile page .. 67
Figure 61 my cart .. 68
Figure 62 rating for user .. 69
Figure 63 rating for similar user ... 70
Figure 64 not showing rating to previously rated product ... 70
Figure 65 recommendation for test1 .. 71
Figure 66 admin viewing clusters .. 72

List of tables
Table 1 data dictionary diagram ... 31
Table 2 comparison table of model .. 43
Chapter 1. Introduction:

Nowadays, Companies and individual are increasingly trying to buy and sell variety of products online. The most of the transaction are conducted with the help of internet. Not only products, but buying and selling of services are quite popular nowadays. According to Statista, the revenue for ecommerce market was US$1,800,517 globally in 2019 and expected to reach US$2,553,572 million in 2021.

![Figure 1: Ecommerce revenue growth worldwide](image)

Although the digital market like ecommerce companies are not more here in Nepal. Ecommerce development in Nepal is also in growing order which can be seen in figure below.

![Figure 2: Ecommerce revenue growth in Nepal](image)
These figures are projected to increase due to increase in number of mobile internet users which can also be seen in figure above.

The ecommerce market is blooming in advanced and developed country of world. The development of online commerce can also be seen in figure below. (statista, 2020)

![Map showing top 5 countries with highest sell in e-commerce](image)

Figure 3 top 5 countries with highest sell in e-commerce

1.1 Motivation:

The idea of building this system is to ease both buyer and seller by recommending products to individual user. Our country Nepal stills lack certain types of ecommerce. There are very limited ecommerce sites in Nepal where user get their desired product. Nearly all of Nepal’s ecommerce platform fails to produce satisfactory revenue from the product till this date. Because of this reason I have built an ecommerce framework for purchasing and selling of numerous products in different categories like books, electronics, fashion, cosmetics, baby products and many more.

The one reason behind the stagnation of growth in the present ecommerce site is due to lack of knowledge about the individual interest of the user and the customer’s on-site behavior. Sales are not boosting as expected here in Nepal because it is one of the tough tasks to find and target the right audience in ecommerce. To address this type of problem, I researched the topic of recommendation system to generate the personalized recommendation system for each user who uses our system. This build system uses automated recommendation system which solves the mentioned problem. The developed
recommendation system helps the new and existing user to discover relevant and related product recommended from our system based on browsing history, user’s behaviors, ratings, demographics and purchase history. The developed system is Business to customer type of ecommerce where customer may order, buy, rate and review different products online posted by the admin of this site. The web application is very easy to use because of simple and comfortable user-centric interface.

1.2 Academic question:
How will a recommendation system that uses machine learning technique be used to predict the interest/desires of users, boost their experience to increase the sale of products, earn revenue in ecommerce sector and what are the possible challenges and issues in real word?

1.3 Aims:
The main aim of this developed project are to:
- design, develop and test the full featured ecommerce web app for viewing, buying, rating and reviewing different product
- build recommendation system to recommend different product to individual user.
- examine, identify and evaluate the past publication or existing system of the related topic.

1.4 Objective:
The main objectives of the study are as follows:

1) To study about the B2C type of ecommerce in Nepal and recommendation types that can actually be used in ecommerce site.

2) To build the powerful recommendation system that can recommend each and every individual user of the system.

3) To provide the online platform to view, buy rate and review different product.

4) To implement the MVC (Model, View, controlled) pattern in web-based application.
1.5 Artifact:
To develop all the artifact given below, Django framework with MySQL database is used. The developed system is ecommerce which can recommend products to similar users of the system.

1.5.1 Artifact 1-Web Application:
The developed system has scalable website design with different features like registration, authentication, search products, product details, categories, sub categories, search bar, user generated review, ratings etc. All the front-end is displayed from the database where only admin can upload all the content. This site has also review system where user can give their view about the specific products and can also give rating from 1 to 5. Admin can add the item to display to other users. The system is also made mobile user-friendly and Search engine optimization for the better performance.

1.5.2 Artifact 2-Product Recommendation:
This site recommends relevant product to users individually based upon the user’s behaviors, ratings and history of purchase. Various techniques are used and tested to develop the model. Python is used to develop the AI model for this system.

1.6 Scope and limitation of project:
As the main aim of this project is to develop and test the ecommerce system and to integrate recommendation system into web-based application. The scope of the study may include product bought on various part of Nepal but can be used worldwide. The study is not specific to one country or the region. Today’s users are demanding very rich system to purchase product online. There is some limitation of the system: I may not work well with newly signed in users due to the fact that the recommendations emerge from a correlation between the intended user and other used focused on collection of ratings. So, it is almost impossible to judge the user and to categorize a user with very few ratings. It only starts recommending things after user rate some of the products from the system. In similar fashion, new item if not rated by any user, it gets recommended at the last part of the recommendation. Since user only see upper part of the recommendation. The
product rated very low also does not appear at the top part of the recommendation. It is
also known as “early rater” problem and cold start program. To deal with this problem,
homepage of this site does not show recommended things but only shows the latest
product from the database and recommended things for the user can only be seen from
recommendation webpage. It takes much more time to recommend products to fresh
user. The reason behind choosing this project is to show how recommendation can be
build, designed and analyzed. The recommendation is that type of system which can be
extended in future and the algorithm used during the development of this project can be
improved throughout the period of maintenance of this project. Although the system works
perfect in larger dataset.

1.7 Report Outline:
The rest of this report is prearranged as: Chapter 2 of this report presents relevant
theoretical literature review of papers, journal and books related to recommendation
system approaches, technique and algorithm. Chapter 3 covers the requirements
gathering and analysis part of the system. Chapter 4 focuses in design and architecture
implemented in project. Chapter 5 deals with implementation part, highlighting key
aspects and development process. Chapter 6 takes the reader walkthrough of practical
implementation of system. Chapter 7 provides Testing and Evaluation of the system.
Chapter 8 concludes the report and final section describes future work in related topics.
Chapter 2 Literature Review:

My topic of research is not the new topic but active area of research. Recommendation system (RS) is popular field of study among the researcher and scientist since last few decades. RS to recommend products, books and news is fairly common in large tech companies including amazon and Google. Social media site like Facebook, Tinder and twitter also suggest new friends and advertisements. Not only that but last FM, pandora etc. also offers songs that the user may like. Films and online videos are likewise generating meaningful recommendation by companies such as Netflix, Movie Lens, IMDb, YouTube etc. (agrawal, et al., 2017)

RS comes into practice in order to address, deeper analyze and resolve the issue and problem of both buyers and sellers by automating the activities based on the quality of user-item communication. (Melville & Sindwani, 2018)

Recommendation engines is totally transforming or reshaping ecommerce industry by helping the customer to choose the relevant product. Recommendation system allows to increase the figures of sells, to offer more varied products, to improve user satisfaction and to fully consider customer needs. In simplest term recommendation engines are the ranked list of products to the user based upon different factors like user’s preference and constraints. To first determine the constraints and preference, RS collects user’s view with the help of ratings to the particular product in most of the cases. (Ricci, et al., 2011)

RS can also be called as information retrieval as it is used to filter the system and display only item’s that match the user's interest. For this, user must give some of interest to the system and system tries to display products user may like. If user does not give any information to the system, the system cannot provide any recommendation. Various tools are available to recommend the product. Most used recommender system in existing online environment are collaborative filtering, content-based filtering, Popularity based, Hybrid approach. (Anantha & Bhattula, 2017)

2.1 Types of recommendation system:

Before making recommendation system, one must know the pros and cons of each type of recommender system which are described in this section. Broadly speaking there are two approaches of recommendation system. They are content based filtering, collaborative filtering and hybrid filtering. Each of this type has their own limitation and benefits which is shown in later part of this section. Collaborative filtering is further divided into two type: Model-based filtering techniques and memory-based filtering techniques. Model-based filtering techniques is further divided into clustering, association, Bayesian and neural networks. Memory based filtering technique is further divided into user-user based collaborative filtering and item-item based collaborative filtering. Hybrid filtering is combination of both collaborative and content-based filtering.

![Diagram of types of recommender system](image-url)
2.1.1 Content-based (CB) filtering:
Content-based (CB) filtering, also known as cognitive filtering recommends similar products that the user had already bought from the system. Content-based filtering can also recommend products to users with other factors like age, gender, geography, review, usage pattern etc. The preferences of particular users can be determined by retrieval methods such as cosine similarity matrix, term frequency-inverse document frequency, Long Distance Affair etc. or by using machine learning techniques like support vector machines, Naïve Bayes, decision trees etc. (Pazzani & Billsus, 2015)

2.1.1.1 Term Frequency – Inverse document frequency:
TF-IDF techniques is mostly used in knowledge extraction and processing of data. Term frequency as the name indicates, measures the frequency at which the word occurs which can be calculated as the ratio of total number of particular words occurs in a document and total number of words in the document. (Beel, et al., 2017) Inverse document frequency measures the significance of term in a document and calculated as:

\[\text{IDF (particular word)} = \log_e (\text{total no. of documents} / \text{no pf documents with particular word in it}) \]

This can be calculated as:

\[tfidfweight = \sum_{i \in d} tf_{i,a} \cdot \log \left(\frac{N}{df_i} \right) \]

This technique can be used and effective only in the field where there is more textual data.

2.1.1.2 Cosine similarity matrix:
This approach offers the similarity estimation between two items by angle calculation of two vectors. Cosine similarity can be calculated as:

\[\text{similarity} = \cos(\theta) = \frac{A \cdot B}{|A||B|} \]

It is the decision which is based on orientation and not on magnitude.

(Sitikhu, et al., 2019)
2.2 Collaborative filtering (CF):
The developers at xerox first coined and developed the term collaborative filtering. Since then, has been enhanced and developed by using different technology and algorithms. The main goal of recommendation system is to suggest the content based on individuals' desires. Collaborative filtering (CF) suggests the item which are preferred by other related users. There are various types of algorithms that can recommend the item and every algorithm has different set of features. Different algorithm may be great or bad for various datasets depending upon the features. The algorithm can take more time to function better in particular datasets. (HERLOCKER, et al., 2004) Some of the algorithm are described briefly:

2.2.1. Neighborhood-based approach:
Neighborhood-based algorithm can be used to predict the user’s desire and opinion. It also analyzes the existing users from the system. In this method, the group of similar users is segregate and their average rating is computed from all users that are close to the actual logged in user. In simple form collaborative filtering is based upon the assumption that similar customers like similar products. So, the main task is to find the similar customer from the set of all the customer available in the database. The one way to find similar customer is from the ratings and reviews given by the customer to different products. Another way is to track all the user’s activity in the web application. For the recommendation part first of all, similarity between separated user and active user is calculated by using different techniques which are discussed below:

2.2.1.1. Pearson Correlation:
This similarity was introduced in 1994 by Group Lens and is considered as the best-known algorithm to find the similarity between the users.

Let the profile of the targeted user be x (represented as a vector) and the profile of another user be x (x ∈ T). Here the score of similarity between the target user x and the neighbor y can be calculated by using the following formula.

\[
R_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 (y_i - \bar{y})^2}}
\]
Where,

\(x_i \) is the rating given by user to item \(i \),
\(n \) is the total number of items and
\(\bar{x} \) is the mean rating given by a user and calculated by using the following formula:

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

The value of \(R_{x,y} \) comes between -1 and +1. If a value is equal to -1, there is a negative correlation between two values and if the value is equal to or near to 1 there is positive correlation. Here \(x \) and \(y \) are the user whose similarity needs to be computed. (Katarya & Verma, 2016)

2.2.1.2. Constrained Pearson correlation:
(Shardanand & Maes, 1995) proposed constrained Pearson correlation to develop the song’s recommendation systems named RINGO. They developed this algorithm from Pearson correlation approach replacing the average rating with average positive and negative level from 1 (dislike) to 7 (like) and neutral (neither preferred nor hated). The Constrained Pearson can be calculated as:

\[
s(u, v) = \frac{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)(r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)^2} \sqrt{\sum_{i \in I_u \cap I_v} (r_{v,i} - \bar{r}_v)^2}}
\]

Where \(u \) and \(v \) are two users whose similarity needs to be computed \(R_{u,i} \) is the rating given by user \(u \) to item \(i \) and \(R_{v,i} \) is the rating given by user \(v \) to item \(i \).

2.2.1.3. Cosine distance:
The user similarity can also be calculated by taking ratings of users and putting two user’s rating as vector in an m-dimensional space and compute the cosine of angle between two users as shown in equation below:

\[
w_{a,u} = \cos(\bar{r}_a, \bar{r}_u) = \frac{\bar{r}_a \cdot \bar{r}_u}{\|\bar{r}_a\|_2 \times \|\bar{r}_u\|_2} = \frac{\sum_{i=1}^{m} r_{a,i} r_{u,i}}{\sqrt{\sum_{i=1}^{m} r_{a,i}^2} \sqrt{\sum_{i=1}^{m} r_{u,i}^2}}
\]

where \(w(a,u) \) represents the measure of similarity between user \(a \) and the active user \(u \).
\(I \) is the set of item rated by user \(a \) and \(u \)
\(R_{u,i} \) is the rating given by user \(u \) to item \(i \) and \(r \) is the mean rating given by user \(i \).
+1 (same direction) and -1 (opposite direction) represents high correlation and 0 (irrelevant) represents no correlation. This approach gives both negative ranking and blank rated product as zero rating. (Liu, et al., 2014)

2.2.1.3. Adjusted Cosine Similarity:

Adjusted Cosine similarity is necessary to recommend the user based upon the rating of products. The only problem was the user rate products differently to different products. The solution to this problem is to subtract average user rating from rating provided by the user in each product. So, the adjusted cosine similarity is calculated by using the following formula:

$$s(u, v) = \frac{\sum_{i \in I_{uv}}(r_{ui} - \bar{r}_i)(r_{vi} - \bar{r}_i)}{\sqrt{\sum_{i \in I_u}(r_{ui} - \bar{r}_i)^2 \sum_{i \in I_v}(r_{vi} - \bar{r}_i)^2}}$$

Where, u and v are the two users u is the user to be predicted and v is the active user of the system

2.2.1.4. Mean squared distance:

Mean squared distance, as name suggests, this approach adds the square difference between the rating of both user u and v alongside their common products which is divided by the total number of common products. This approach underlines the penalizing divergence in taste over resemblance of test. The mean-squared distance can be calculated by using the formula below:

$$s(u, v) = \frac{\sum_{i \in I_{uv}}(r_{ui} - r_{vi})^2}{|I_{uv}|}$$

Where u is the active user,
V is the any other user,
s(u, v) - similarity between active user u and user v,

R_{ui} is the rating given by user u to item i to item I,
R_{vi} is the rating given by user v to item i

(Krishnan & Brahma, n.d.)
2.2.1.5. Euclidean Distance:
Euclidean Distance can also be used to find the similarity between two users. The distance between two users can be calculated as:

$$(x, y) = \sqrt{\sum_{i}^{n} (x_i - y_i)^2}$$

Where x_i and y_i are the score of products given by two user u and v for same product n. (Sondur & Chigadani, 2016)

2.2.1.6: Tanimoto Coefficient:
This is commonly known as Jaccard similarity coefficient. It does not take the ratings of items explicitly but it only takes if two users show some preference with one another and calculated by using the following formula:

$$sim(i, j) = \frac{|f_i \cap f_j|}{|f_i| + |f_j| - |f_i \cap f_j|}$$

Where $f_i \cap f_j$ is intersection between product i and product j for items where users prefer Tanimoto coefficient, $sim(i, j)$ is 1 if two products are completely overlapped and if two products are not overlapped, $sim(i, j)$ is 0. (Lee, 2015)

2.2.1.7. Spearman Correlation:
This approach is similar to Pearson correlation, the only difference is instead of finding the similarity between users, this system finds the rank of the user. The spearman correlation can be calculated as:

$$s(u, v) = \frac{\sum_{i \in I_u \cap I_v} (k_{u,i} - \bar{k}_u)(k_{v,i} - \bar{k}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (k_{u,i} - \bar{k}_u)^2 \sum_{i \in I_u \cap I_v} (k_{v,i} - \bar{k}_v)^2}}$$

$k_{u,i}$ is the i’s ranking for the ratings given by use. (Sivaramakrishnan, et al., 2018)

2.2.2 The clustering based Collaborative filtering:
This type of recommender system uses cluster of similar users portioned or divided into a different set of data as compared to all other existing users in system. In simpler term, clustering can be called as the grouping of similar user based upon their preference.
There are different types of clustering. Centroid-Based clustering, Distributed-Based Clustering, Connectivity-based Clustering, Density-based clustering are some of them. Any of the mentioned distances can be used for the measurement of user similarity distance. The prediction can be calculated by using the following formula:

\[
P_{a,i} = A(\bar{r}_{a,i}) + \frac{\sum_k \left[w_{a,k} \times \left(r_{k,i} - A(\bar{r}_{k,i})\right)\right]}{\sum_k |w_{a,k}|}.
\]

Where \(P_{a,i}\) is the prediction of user \(a\) to item \(i\). \(A(\bar{r}_{a,i})\) is the average rating of user \(a\) to product \(I\) and \(A(\bar{r}_{k,i})\) is the average ratings of user \(k\) to item \(I\). (Kim & Yang, 2015)

2.2.3 latent factor models:

Latent factor model is generally called as matrix Factorization models. This model connects user and products in a latent feature space of low dimension \(F \in \mathbb{R}^d\) where \(F\) is the hidden characteristics and \(d\) is the latent feature space dimension. For an example, shoes products can be categorized by their features such as ankle boot, army boots, athletics shoes, ballet shoes, boat shoes, heels etc. A user has hundreds of products could have been bought from 20 category. So, 20 categories are adequate to explain their preferences. The same thing can be applied to products. Singular value decomposition is one of the common techniques for dimension reduction to identify latent factors. The tensor factorization, Bayesian network are other methods for identifying the latent factor. (Jingying, 2017)

One disadvantage of using content-based recommendation is the system shows always similar type of product all the time. The limitations of content-based recommendation systems are overcome by using collaborative filtering. If the content is not available for the product or if the content is difficult to get still gets recommended to users. No matter what the products look, if purchased user gives good rating to the product it gets recommended to other similar user as well. This system suggests product by looking at the other users(neighbors) that have similar pattern of rating. The neighborhood-based recommendation is favored by various researcher and developer because of its simplicity, efficiency, stability and justifiability. (Desrosiers & Karypis, 2017)
Nowadays, many companies are also trying to use deep neural networks like RBM, Auto encoders, KGE, MLP, AN, AM, RNN, CNN, CF_NADE etc. There are a greater number of hidden layers and better techniques for initialization parameters in Deep neural network. A DNN with large number of hidden units can be more powerful and effective in modeling. Deep neural network in recommendation system is one of the fields that is on the way to perfectionist. Different scientists and researcher are studying and implementing deep neural network for recommendation. Most of the recent work on recommendation are based upon the deep learning-based recommendation system.

I have studied some existing papers, books related to recommendation system and techniques, experiments to complete this project. Some of the techniques, application and evaluation from the papers related to recommendation system are listed below.

1. One of the journals purposed by (Sharma & Mahajan, 2017) made recommendation system for GitHub. They used collaborative filtering with Pearson coefficient and cosine similarity to find the similar user of GitHub to recommend code to the user. Another paper (Shao, et al., 2020) recommended GitHub repository for paper of academic by using item-item recommender system. They used Graph convolutional Network for the classification purpose on 11,272 papers and 7,516 repositories initially and increased to 32,029 papers to evaluate the performance in large number of datasets. To recommend better same repository must be stared by multiple user which leads to cold start problem. So, new user repository until and unless stared by other user is not recommended to other user which is the limitation of paper. Despite of this limitations, Graph Convolution Network works much better than other traditional recommender system when there are large number of constrains and features to watch because they can encode both information of node and structure of graph at the same time.

2. (Wang & Qiang, 2017) have presented a probabilistic framework of neighbors-based recommendation system and multi-layer similarity approach. They also evaluated the model produced from proposed framework using RMSE. A map-based recommender with customer centric interface was done by (Park, et al., 2007) using proposed Bayesian based recommendation system.
3. In the paper (Jiang, et al., 2018) used novel matrix factorization algorithm and they called their algorithm as Magnitude bounded Matrix factorization to fix user, product prediction fluctuation preceded by conversion of constrained function to unconstrained task. To solve the unconstrained task, they have added a stochastic gradient descent method. They used improved matrix factorization in three real dataset and their algorithm, MBMF indicated strong stability which means this algorithm can be used in larger set of dataset since this algorithm does not repeat the process to determine the best suitable value of k. Bounded matrix factorization, MBMF, Feature-wise updated Cyclic Coordinate Descent method, BMC-ADMM, Bounded SVD gained more accuracy than low level matrix factorization, Non- negative matrix factorization. They used RMSE, MAE and F1-score to compare the result.

4. A research paper published by Phonexay, et al to estimate the performance of movie recommendation. They compared proposed improved k-clique methods with k-nearest neighbors, the maximal clique methods and the k-clique methods in movie lens dataset. They performed the test in 10 random datasets from the rating of 800 users to the movies. They have taken the user with 200 rated movies, 100 rated movies, 50 rated movies and 20 rated movies in four different parts. To predict the precision in the recommended dataset they used Mean absolute percentage error (MAPE).The table below shows the MAPE values of all the algorithms for the user rated 200 movies, 100 movies, 50 movies and 20 movies:

<table>
<thead>
<tr>
<th>S.N.</th>
<th>algorithm</th>
<th>MAPE (200 ratings)</th>
<th>MAPE (100 ratings)</th>
<th>MAPE (50 ratings)</th>
<th>MAPE (20 ratings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>KNN</td>
<td>22.08%</td>
<td>34.45%</td>
<td>40.90%</td>
<td>54.30%</td>
</tr>
<tr>
<td>2.</td>
<td>Maximal clique</td>
<td>30.30%</td>
<td>39.62%</td>
<td>48.04%</td>
<td>59.63%</td>
</tr>
<tr>
<td>3.</td>
<td>k-clique</td>
<td>20.47%</td>
<td>31.52%</td>
<td>38.57%</td>
<td>53.01%</td>
</tr>
<tr>
<td>4.</td>
<td>Improved k clique</td>
<td>18.85%</td>
<td>29.80%</td>
<td>36.57%</td>
<td>49.28%</td>
</tr>
</tbody>
</table>
From this experiment compared to than other methods like KNN, Maximal clique, k-clique, it was found that the proposed improved k-clique method achieved more accuracy than others. K-clique approach would also increase the precision of the recommendation system but the only downside is measuring the k-clique approach takes a log time compared to other approach. Right now, KNN is the correct algorithm to use than maximal clique method which is shown in above table. (Phonexay, et al., 2018)

5. A prototype was made to recommend the users based upon the voice input from the user by (Kang, et al., 2017) on movie Lens dataset. They collected 347 user’s datasets with the help of survey. This is the first recommendation that use natural language processing to detect the desire of the user. They try to solve the real-world problem like what the user really wants from the recommender system not the queries that will work or not in a particular system. The main goal behind this research was to find the subject bias and give the clearer idea to other researcher that the Natural language processing can also be the future to recommendation system. Similar concept was also used in (Chnag, et al., n.d.) where movies are recommended based upon the tag-based preference of users. They recommended the movies based upon the formula:

\[
\text{pref}_{u,t} = \frac{\sum_{m \in M_u} \text{rating}_{u,m} \ast \text{rel}_{m,t} + K \ast \text{avg}_u}{\sum_{m \in M_u} \text{rel}_{m,t} + K}
\]

Where, m is the movie in set of movies M_u,

rating_{u,m} is the rating given by user u to movie m

and rel_{m,t} is the relevance score of movies tag

6. In the paper (Zhou, et al., 2018) tried to recommend the display of appropriate advertisement to user in ecommerce company by using very large number of data. They presented the average of five times experimented result from dataset of both Amazon and movie lens dataset. They used deep learning for the prediction of Click Through rate. They developed the base model by using embedding layer to alter high dimensional vectors to low dimensional dense representations followed by pooling layer and Concat layer to deal with various user and their various behavior. To be specific, they used two pooling layers, one is sum pooling for the sum operation and another is average pooling
for average operations to embedding vectors. Fully connected layers are used to practice the feature mixing. They used two training techniques: Mini-batch aware regularization and data adaptive activation function. After training with amazon dataset, movie lens dataset and Alibaba dataset. They compared the deep interest network (designed model) model with other existing deep networks like Base Model, Wide and Deep, Deep FM and PNN. The result is better in the developed deep interest network. They used AUC metric to compare the result with another model and optimizer. They later deployed Deep Interest network (DIN) in Alibaba ecommerce company to display the advertisement to the wide variety of user. Similar to this study, (Zhou, et al., 2019) tries in CTR to estimate the probability of user can click on the product by using Deep Interest Evolution network (DIEN) and compared this model with other model mentioned above and found out that the Deep Interest evolution Network captures sequential interest efficiently and also models the evolving interest process related to particular product that enforces the performance of large CTR prediction in the advertisement system.
Chapter 3: Requirement gathering and analysis:

Analysis of requirement can be defined as to identify system requirements for investigation, documentation all the requirements and analysis of those collected requirement. The major problem behind this project is to build the ecommerce webapp and integrate recommendation system.

In this section we discuss about the fact-finding techniques, function requirement, non-functional requirement and usability requirements.

3.1 Sources of data:
The data for the ecommerce site is collected from different existing national ecommerce websites like Daraz, Sasto deal, esewapasal etc. and foreign sites like flipcart, amazon, ebay, Walmart etc. The data for recommendation system is the data provided by amazon. For making recommendation only, I have also made sample data by myself.

3.2 fact finding techniques:
I have researched on different topic related to ecommerce and recommendation system. There are many fact findings technique, but I focused in only two of them. I did not choose interview and questionnaires as the fact-finding techniques rather I chose observation, research and studying ecommerce companies as fact finding technique. One must observe the similar system to get the insights of competitors fact.

3.2.1 Research:
I think research also plays a vital role to find what the user really wants from the user. Before this study I have not known about this problem domain, I have manually researched and read papers on the main topic needed for the ecommerce site. So, I decided to view, understand and manipulate internal mechanism of existing system similar to my system as much as possible. I have found that there are many topics rather than just purchasing product in ecommerce site like searching, sorting, Wishlist etc. Recommended product is also one of them. I have also researched about the existing web application like flip cart, amazon, Daraz etc. Although these sites are very large site with millions of transactions and billions of activities in a day, basic features of ecommerce are almost similar to small enterprise ecommerce system.
3.2.2 Observation:
Observation has been used to observe app behavior explicitly. I have examined, observed, viewed and displayed numerous web-based application similar to ecommerce system. I have attempted to make the system similar to my research as much as possible to make this system as much as practicable in real world.

3.3 functional Decomposition diagram:
3.4 Functional requirement:
Functional requirements are the system’s technical features or what the system is meant to do. Some of the functional requirement are described below:

3.4.1. UI/UX requirement:
Attractive design, easy to navigate and speedy page loading are three features ecommerce site must have. Apart from that, use of color, fonts and images also plays a vital role to engage the user. These issues must be resolved. Mobile devices are the great source of user nowadays. So, this system must be mobile friendly and scalable to different screen sizes. This system must have features of search and filter product based upon categories and sub categories. To ease the use for the native user, this system must have language option to change the language to English to Nepali. Customer always want to hear from other customer how the shopping suits their needs and expectation. To solve this problem review and ratings must be used. This system must have featured of shopping cart and checkout to both logged in user and anonymous user.

3.4.2. personalized recommendation system:
Most popular system are dynamic and personalized to user. It is one of the key factors to engage the user with the system. The products are recommended to users based upon their preferences, user history and ratings. The already rated product must not be recommended to the user.

3.4.3 Management requirements:
Management requirements contains only registered admin can access the admin panel and login to admin panel of the system. Only admin can upload and manage products and customer can buy needed product from the system.

3.5 Non-functional requirement:
Nonfunctional requirements specify whether a particular task will be performed or not. Some of the no non–functional requirements are listed below:

3.5.1. Speed:
Speed is actually much more complicated than it seems. Speed is one of the nonfunctional requirements that must be considered. The speed may lag because of
many reasons. Some of the common reasons for slow load are due to high-resolution unoptimized images, complex order entry process, use of many API calls to render, unclean code etc. All of these issues must be solved.

3.5.2. Security and privacy:
Since this web app uses most sensitive data of the user, the system must be protected from vulnerabilities. The authentication must be secured from data breaches. To protect the system from code manipulation, the software must be coded with much complexity. The privacy must be protected. Policies, terms and conditions must be able to update from the admin side.

3.5.3. Extensibility:
One of the strong points of this system is that it can be extended to handle a large number of users and products with different categories and subcategories because the admin panel is responsible for the flash sale, slider, product, categories, subcategories, and many more.

3.6 Usability requirement:
3.6.1 Ease of use:
The system must be easy to use and understand the system or the casual user. The navigation and function must be simple.

3.6.2 Satisfaction and memorability:
The design of the system must be pleasant to view and the user must be able to recall the site when the user returns after a certain period of time.

3.6.3 Graphics:
Graphics is considered as one of the components that help users better connect to the system. It mostly deals with data rendering and displaying high-quality data. The code must be optimized and should be able to show similar quality in any hardware devices.
Chapter 4: design and architecture:
Different design and architecture are designed in this section. All the process database and system are designed in this section.

4.1. Process Design:
4.1.1 Use case diagram:

Figure 6 Use case diagram
4.1.2 Class diagram:

Figure 7 Class diagram
4.1.3 Sequence diagram:

Figure 8 Sequence diagram
4.1.4 State Transition diagram:

Figure 9 State transition diagram
4.1.5 Activity diagram:

4.1.5.1 Activity diagram for user:

Figure 10: activity diagram for user
4.1.5.2 Activity diagram for admin:

![Activity diagram for admin](image)

Figure 11 activity diagram for admin
4.2. Database design:

4.2.1 Entity relation diagram:

Figure 12 Entity relation diagram
4.2.1 Data dictionary diagram:

<table>
<thead>
<tr>
<th>Table</th>
<th>Column</th>
<th>Datatype</th>
<th>Length</th>
<th>Nullable</th>
<th>Primary key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>password</td>
<td>varchar</td>
<td>128</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Last_login</td>
<td>datetime</td>
<td>6</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>User</td>
<td>Is_superuser</td>
<td>tinyint</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>username</td>
<td>varchar</td>
<td>150</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>First_name</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Last_name</td>
<td>varchar</td>
<td>150</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>email</td>
<td>varchar</td>
<td>254</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Is_staff</td>
<td>tinyint</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Is_active</td>
<td>tinyint</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Date_joined</td>
<td>Date_joined</td>
<td>6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Profile</td>
<td>Id</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>First_name</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Last_name</td>
<td>varchar</td>
<td>150</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>email</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Date_of_birth</td>
<td>date</td>
<td>6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>bio</td>
<td>text</td>
<td>-</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>avatar</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>slug</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>city</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>hobby</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>district</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>country</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>id</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>category</td>
<td>name</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>slug</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>image</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Field</td>
<td>Type</td>
<td>Length</td>
<td>Primary Key</td>
<td>Null</td>
<td>Index</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>id</td>
<td>int</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>subcategory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>slug</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>image</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>slider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>description</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>image</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>varchar</td>
<td>150</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>slug</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>image</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>description</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>price</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Discount_price</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>stock</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>available</td>
<td>tinyint</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Created</td>
<td>datetime</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>updated</td>
<td>datetime</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>int</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Product_id</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pub_date</td>
<td>datetime</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>comment</td>
<td>varchar</td>
<td>200</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>username</td>
<td>varchar</td>
<td>100</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>rating</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>User_id</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ref_code</td>
<td>varchar</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ordered</td>
<td>tinyint</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>items</td>
<td>int</td>
<td>11</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Field</td>
<td>Type</td>
<td>Size</td>
<td>Primary</td>
<td>Unique</td>
<td>Nullable</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Start_date</td>
<td>datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order_date</td>
<td>datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billing_address</td>
<td>varchar</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping_address</td>
<td>varchar</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>received</td>
<td>tinyint</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Being_received</td>
<td>tinyint</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>int</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User_id</td>
<td>int</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item_id</td>
<td>int</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quantity</td>
<td>int</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td>tinyint</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 data dictionary diagram
4.3. User interface:

4.3.1 Wireframe:

Figure 13 wireframe of index page
Figure 14 Product detail page
Figure 15 profile page
Figure 16 My cart page
Figure 17 order details
4.4. System architecture:

4.4.1 The MVC pattern:

This site uses MVC (model, view, controller) pattern instead of traditional server-side code. As I am using Django as a framework, Django differentiate business logic from representation. This architecture splits an application into three strata/layer. They are: Model, View and controller. Model mostly deals with the database. To be more specific, models defines the table of database. Views are what we see in browser or what the user views when visited. View mostly deals with the client or end user of the system. Controller helps to control information flow. The controller is the center of the MVC architecture, as it helps to connect models with views. Thus, MVC architecture helps us to create and maintain complex application. Django uses MTV (model, template, view) architecture. Only the terminology used in Django are different. The template is used instead of views and views instead of controller.

![MTV architecture Django](image)

Figure 18 MTV architecture Django
Figure 19 system architecture for recommendation system
Chapter 5 implementation and development process:

One of the key features of this system is to develop the recommendation for a given active user. The development component is then split into three major phases: firstly, the implementation of ecommerce system; secondly, the development of a recommendation system that can give reliable products independent of the size of the dataset and thirdly integrating the recommendation model to web app. First step is the downloading and installing all the necessary packages needed to develop the tool. Before development of the system, some of the software is installed as shown in technical specification below:

5.1.1 Technical specification:

Framework: Django 3.2

Library: bootstrap3, numpy, pandas, matplotlib, scipy, scikit-learn

IDE: Pycharm, Jupyter notebook, spyder

Text editor: sublime text

Language: python 3.8.3

Database: MySQL 8.0

Browser: Google Chrome

Datasets: Amazon dataset, user generated dataset

Front end: Html, CSS, JavaScript

Documentation, diagram and presentation: Microsoft Office, PowerPoint

Visual Prototyping tool: creatly, visual studio, Mockups

5.1.2 Development:

After installing all above packages and library, it’s time to develop the ecommerce system. First front-end part is made just like the wireframe mentioned above with the help of html, css, javascript and bootstrap using sublime as a text editor. After that front end is connected to backend database MySQL with the help of python and Django. The database is designed like the above-mentioned entity relation database. All of these
features are discussed in next chapter in detail. The only problem faced during the development of this system is generating recommendation as I have very less number of data and my database does not match with the dataset given by any dataset provider. After successfully developing ecommerce site. I tried and tested all the recommendation system in Jupyter notebook and Spyder which is also discussed in next chapter.

The product has different features like productid, product description, rating, comments, category, sub category etc. The recommendation is completely based upon the rating. Rating 1, 2 means not liked product and rating 4,5 are considered as the liked product. So, I made the recommendation system by using cluster of similar users. First the query set is done to the logged in active user for all the rating that the logged in user has provided. The data is fetched by using the Review class. Review class has review id, rating, user_id, comment. In similar fashion all the information of user. Only fetching the data from database and recommending the random products from the database is not the wise way and I never wanted to do that. First things needed to recommend the product is to find out preferences of the user. So, for this purpose the newly logged in fresh user is asked to rate some of the products of the system. The data gets updated once the user rate any new product. The similar user is calculated by the rating given the user u to product p assumed that the user in particular cluster have same preferences with each other as they have rated the products in similar manner. In similar fashion, other logged in user are also categorized in cluster. All the inactive users of the system are placed in one of the clusters. The users with no ratings in any of the products are also considered as inactive users, those users are encouraged to rate the product to get the recommendation. This system works perfectly in only three condition: product is not deleted in database, the product has been rated positive by the similar user which are stored in same clusters as in logged in user and lastly , the products that were never reviewed by the logged in user are shown to the user. The already rated product by user is never shown in recommended part of the system. After successfully making and updating the cluster based upon the user preferences. Similar user’s cluster data are fetched to the system to recommend the product. Then after all the product rated by similar user excepts the rating already given by the user. Lastly, based upon the average rate, the products are displayed in user’s recommendation page.
To automate the task, instead of making cluster by only the admin, the cluster must be updated by the user’s activity in the system. Every time it would not be feasible to view and update the similar clusters from the admin side. Recommendation works with data and knowledge provided by the user to the system. I used clustering based recommendation because it is not always feasible to compare the logged in user with any other user in the system whenever recommendation is required. So, to increase the speed of the prediction, I use cluster of the similar user based upon the preferences, system tries to predict the rating for the system. The cluster must not be calculated immediately after a user rate new product, otherwise it would lead to scalability problem which was one of the reasons behind choosing clustering technique.

The system works as shown in figure above in system architecture. First of all, the sparse matrix is created using the rating provided by the user and their user information. I have made the matrix with row of username and column with product name. in simpler term, it can be said that the matrix R1, R2…. Rn is the username1, username2…username n and c1,c2.. cn is the productname1, productname2 to till n. For each element(r,c) contains username with their corresponding rating to the user. For each user, there will be rating for each product. In order to make the sparse matrix, I used to prebuild function dok_matrix of scipy library. I don’t want to make this system complex. I want to make the project simple, so made 1/10th of the user as cluster. This code must be changed if the system is used for the large number of user and rating. dok_matrix is converted to csr_matrix to calculate the k means clustering. Both dok_matrix and csr_matrix are class of scipy library which can be found on the documentation page of the scipy library.

The review, rating and user information can also be passed from csv dataset and read from csv files using panda’s library. Since I don't want to make this system more complex. I have used in the real database instead prebuild dataset. The cluster is then updated in database.

There are some limitations of using this system which I have discussed in chapter 8. K-means is not most common model for recommending product. The only reason behind choosing this algorithm is simplicity and fast recommendation as it uses parallel and
scalable approach. It is best for the developer like me to understand and is very easy to maintain.

Another recommendation that I have made during this process is popularity based recommendation system which can be shown to the user if no recommendation are shown to the user. The popularity is calculated by using the sum of rating times the total number of rating. however, this popularity-based system can be improved.

I have also used tf-idf technique for recommending products that has similar word in the description box. The similar products are displayed so, it is a content-based filtering.

Before making all of this recommendation, I have calculated and used different approach and techniques of recommendation which can be seen in Jupyter notebook. First, I tried to calculate the score similarity between users in the system. For simplicity, I used two users from the dataset and try to find out the similarity between those two users who have rated already.

```python
[20]: cosine_similarity('user1', 'user4')
[20]: 0.5412746144356352

[21]: euclidean_similarity('user1', 'user4')
[21]: 6.557438524302

[22]: kernel_person_coefficient('user1', 'user4')
[22]: -0.13710212427677046
```

Figure 20 Euclidean score and Pearson score

After finding, similarity score, products are displayed to the similar user based upon the rating provided by the similar

I later made the algorithm based upon collaborative algorithm on amazon dataset on both user-user based and item- item based algorithm. To increase the accuracy, I removed all the ratings with 3 values from the dataset as three ratings does not directly determine either the user rated positive or negative.
I replaced all the zero-value rated product in a sparse matrix with mean value of the column to deal with sparsity and tried to compare the result with the one that was replaced with baseline rating (3) because the sparsity of the dataset becomes 0.99367, That means only 0.067% matrix has the value.

The RMSE in later model where nan value is replaced by 3 ratings (baseline rating) extremely diminishes and the prediction for the test dataset is also very remarkable and notable. The second model says that the use who have not rated the product may give the baseline rating but first model says that the user who have not rated surely dislike the product. The RMSE score is also tabulated below:

<table>
<thead>
<tr>
<th>Approach</th>
<th>RMSE value for normal rating</th>
<th>RMSE for baseline rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-user based CF</td>
<td>4.35927000050732</td>
<td>1.7277263715301425</td>
</tr>
<tr>
<td>Item-Item based CF</td>
<td>4.35927000050732</td>
<td>1.7277263715301425</td>
</tr>
<tr>
<td>Latent factor model</td>
<td>4.2112786441410694</td>
<td>1.6781043440479</td>
</tr>
</tbody>
</table>

Table 2 comparison table of model

The performance and RMSE value for normal ration is very high than that of using baseline rating. Also, Model based approach latent factor model's RMSE for both normal rating and baseline rating is very good. So, latent factor model is also used in this system.
Chapter 6: walkthrough of system:

A walkthrough of the application is illustrated in this chapter. Examples of features are presented for each user type: new user, returned user and administrators. Additional functionality and features that are common to all users can be found in Appendix.

6.1.1 Admin panel:

Figure 21 admin login
Figure 22 Admin Dashboard

Figure 23 Add category

Figure 24 add sliders
Figure 25 Add sub category

Figure 26 Add products
Figure 27 view users

Figure 28 Viewing similar cluster
Figure 29 viewing profile information of user

Figure 30 viewing order detail
Figure 31 view orders

Figure 32 view shopcart of user

Figure 33 Update order product information
6.1.2 User view:

Figure 34 user sign up

Figure 35 user sign in
Figure 36 Home page

Figure 37 Detail homepage
Figure 38 Search list

Figure 39 View category wise product
Figure 40 Product detail page 1

You may also like

Gaming mouse
Rs.190.99

Recent reviews

Rate 3 of 5 by punam

Good for budget gaming mice I good weight and performance but the software is little difficult to use and some of the software specification isn’t working at all....But got the best product of the

Add your review

I don't like this

Figure 41 product detail page 2
Figure 42 User profile

Figure 43 Edit profile
Change Password

Old password:

| |

New password:

| |

Warning: This password would take to crack.

- Your password can't be too similar to your other personal information
- Your password must contain at least 14 characters
- Your password can’t be a commonly used password
- Your password can't be entirely numeric
- Your password must not be the same as the current password
- Your password must use of both uppercase and lowercase letters
- Your password must include of one or more numerical digits
- Your password must include of special characters, such as @, #, $

New password2:

| |

Warning: Your passwords don’t match.

Save

Figure 44 change password
Figure 45 My cart

Figure 46 My orders
Figure 47 fill order details

Order details

- Name on Card: Bohat
- Surname on Card: khadga
- Address: pokhara Administrative Kathmandu
- City: Kathmandu
- City: 9803348417
- Date: May 26, 2020 1:03 a.m.
- Note: This product is being delivered and on the way
- Status: OnShipping

Order Review

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung1</td>
<td>12000</td>
<td></td>
<td>11800</td>
</tr>
</tbody>
</table>

Figure 48 order details
Chapter 7 Testing and Evaluation:
Different testing and evaluation are done in this section.

7.1.1 Invalid Credential:
I have used following criteria to test the system.

1. Password wrong:

Figure 49 password does not match

2. If username matches with another user in database.
Figure 50 user already exist

3. Invalid username or password.
4. The older password was entered wrong.

5. New password and confirmation password do not match.

6. Without the use of uppercase and lowercase letters.

Figure 51 invalid username or password

Figure 52 invalid password 1
7. password is too short and similar to other content of the user information.

Figure 53 Invalid password 2

8. The same password as used before.
Old password:

New password1:

- Your password must not be the same as the current password

Warning: This password would take too long to crack.

New password2:

Warning: Your passwords don't match.

Save

Figure 54 invalid password 3
9. The password is too common or the password is entirely numeric.

Change Password

Old password:

New password:

- This password is too common.
- This password is entirely numeric.

Warning: This password would take to crack.

New password:

- This password is too common.
- This password is entirely numeric.

Warning: Your passwords don’t match.

Save

Figure 55 Invalid password 4

10. During ordering the product from product detail page, the quantity must not be greater than the stack of the product. The stock for the gaming pc is only 23 in our database.

Figure 56 Quantity limit for add to cart
7.1.2. mobile friendly testing:

Figure 57 mobile friendly testing index page
Jewelry

Figure 58 product detail page
Figure 59 mobile testing for login page
Bishal khadka

I love coding 🚀

maheshworhamal@yahoo.com | Kathmandu | Nepal

DOB: May 23, 2020
Hobby: coding

Figure 60 profile page
Figure 61 my cart
7.1.4. Testing for Recommendation system:

For this purpose, I have created three new users as admin, test and test1. I have rated at least four items and try to get the recommendation from the system. Since this recommendation system tries to find the similar user. The similar user must be clustered in database and admin must be able to view the clusters from admin panel. Each time when some user rate different items, the cluster must be updated. The cluster with zero rating and no rating at all must be placed in separate cluster.

To show the recommendation actually working I have rated some of the product from three different user’s admin, test and test1. First admin(user) has rated three books including one mouse and other chain. The test1 also rated three books but two of them are different from admin. Later test user rated exactly the three books including gaming pc. By viewing this pattern, we can also say that the preferences of both admin and test look similar. On other hand test 1 user has rated completely different products than admin and test. So, the similar user for the test is admin. So, If test user clicks the recommendation link, He get the product rated by the admin but not by test user as shown I figure below.

![Figure 62 rating for user](image)

Looking at the other side, as both admin and test are considered as similar user. The admin should also get the recommendation that is rated positive by test. In our case test
user has also rated positive for gaming pc. So, admin must also get the recommendation of gaming pc which is shown in figure below.

![Figure 63 rating for similar user](image1)

If test user rates one of the product from the recommendation page, it must not be recommended again. To make this point valid, I have rated mouse as positive from test user.

![Figure 64 not showing rating to previously rated product](image2)
For another part of testing, I will try to show test and test1 as similar user. For that test1 must rate some of the product of test and test must also rate some of the product rated positive by test1. Test1 rated gaming pc as positive and test rated two of the books rated positive by test1 as positive. Our system gets confused because the system could not find is the test similar to admin or test1. For this both test and test1 must rate positive in one product that was not rated by admin. After rating a health product similar by both users. The recommendation for test1 are shown as shown in figure below. These all products are rated positive by test user.

Figure 65 recommendation for test1
This algorithm will work efficiently if different user has rated different product. The updated information can also be seen from admin side. As shown in figure below:

![Admin viewing clusters](image)

Figure 66 admin viewing clusters

7.2 Academic question:
The main motto behind this project is to find out that how to recommend product based upon the user’s preference or interest. To recommend products to the user, rating component is chosen. After finding the preference of the user for the particular product, it’s time to predict whether the user may like other products or not based upon the past rating s/he has given. So, different techniques are used to find the similar user and their distance which is discussed in critical evaluation part. I used latent based model for recommending products to user. So, the load time for recommending product is pretty fast as compared to user distance finding techniques like Euclidean distance, Jaccard similarity and Pearson correlation. Apart from that clusters are also made based upon the user in the system. The total number of clusters is calculated by using the total number of users. The clusters is calculated by dividing number of users in the system divided by two and adding 1 so that the algorithm works for small number of users also. The cluster are then updated to the database. I tried to increase the performance of the system by adding k-means clustering to find the number of clusters. The system can be extended. Apart from this, this system also uses popularity-based recommendation system which is not personalized recommendation and tfidf based recommendation system which is a content-based recommendation is also made.

This system has some of the issues and real-world challenges which are described in critical evaluation chapter below.
Chapter 8 conclusion and future work:
In this final semester, a full-fledged ecommerce system with different products from different categories and powerful recommendation system is integrated. I used user clustering technique which boost the performance of the system. The system can highly be improved.

Some of the work for future work is to extend the search features and use different filters to the system. Trending list can be generated based upon the popularity of the product in certain period of time in certain area. To increase the sell, flash sell and promo code for certain discount must be integrated. Password strength checker can also be integrated for better security. The option for language can be increased in future to sell more product to the native people of different community. There are many possibilities for the development of the system.

Just like other software, this software also has a lot of unseen bug. I will regularly fix and upgrade the software during maintenance and deployment of the system in real life.

8.1 Critical evaluation:
Recommendation systems are the hot topic in online big tech. Constantly, recommendation systems are changing to user’s behavior in the system. The recommendation systems are of different types as described in literature review part. The distance between similar user can be calculated by using different approach as shown in Chapter 2. I tried some of the approach for calculating distance. I used latent factor model for recommendation purpose. The matrix is used with user’s and their particular rating in product in this system. Most of the ecommerce site uses rating as one of the main components to get the user’s preferences on particular topic. So, I did the same thing. I used the rating as the main component for determining or predicting the rating of the particular user. Apart of rating, other implicit features such as like, comment, purchase record, purchase feedback etc. can also be used to recommend products more accurately.

The load time for loading the recommendation is pretty good. To make the system even faster caching can be used. Further enhancements to this system would be to integrate
deep learning and hybrid approach for recommending the product. Natural language processing can also be used in comment section of product to detect the user's preferences on certain products.

This system does not have function of editing the review and cannot even reply to the comment. To work recommendation part of this system, the system must not delete any product and users from database since, foreign key of product i.e. product_id and foreign key of user i.e. user_id is used in separate review table of database. Like and dislike system can also be used instead of rating system. Recommendation can also be given to message section. Message replying can also be automated. Chatbot and blog section are one of the main components of ecommerce which can also be integrated.
References

Kang, J. et al., 2017. Understanding How People Use Natural Language to Ask for Recommendations, s.l.: University of Minnesota.

Lee, Y., 2015. RECOMMENDATION SYSTEM USING COLLABORATIVE FILTERING, s.l.: San Jose State University.

Liu, H. et al., 2014. A new user similarity model to improve the accuracy of collaborative filtering. State Key Laboratory of Networking and Switching Technology, pp. 156-166.

Zhou, G. et al., 2019. Deep Interest Evolution Network for Click-Through Rate Prediction, Beijing,China: Alibaba Inc..